Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The hydrological cycle in South America during austral summer, including extreme precipitation and floods, is significantly influenced by northerly low-level jets (LLJs) along the eastern Andes. These synoptic weather events have been associated with three different types of LLJs (Central, Northern, and Andes) and are sensitive to remote large-scale forcings. This study investigates how tropical forcings related to El Niño/Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) regulate the duration and frequency of each LLJ type and their impacts on extreme precipitation. Our analysis reveals that ENSO and PDO are important in driving the variability of LLJs over the past 65 years. Specifically, the Central LLJ type is more prevalent during El Niño and Warm/Neutral PDO phases, leading to heightened extreme precipitation in southern South America. Conversely, La Niña years during Cold PDO phases tend to favor the Northern and Andes LLJs, which are associated with increased precipitation extremes in the western Amazon and southeastern South America. Central and Andes LLJs tend to persist longer during these favored conditions, causing more pronounced precipitation events in the areas under their influence. This study enhances our understanding of the influence of large-scale atmospheric forcings on the regional precipitation dynamics in South America.more » « less
-
Free, publicly-accessible full text available March 1, 2026
-
Abstract Northerly low-level jets (LLJ) along the eastern Andes are important conduits of moisture transport and play central roles in modulating precipitation in South America. This study further investigates the variability of the LLJ during extended austral summers. A new method characterizes the spatial extent of the LLJ and finds four distinct types: Central, Northern, Andes and Peru. We show the existence of specific evolutions such that the LLJ may initiate in the central region, expands along the Andes and terminates in the northern region. Conversely, the LLJ may propagate from north-to-south. The spatiotemporal evolution of the LLJ is remotely forced by Rossby wave trains propagating from the Pacific Ocean towards South America, and the different phases of the wave trains favor the occurrences of Central, Northern or Andes types. Occurrences of Central and Northern types are more frequent in El Niño and La Niña years, respectively. The persistence of precipitation is shown to be directly related to the persistence of the LLJ. Lastly, the Madden-Julian Oscillation plays an important role in generating wave trains modulating the frequency of LLJ, especially the Central type.more » « less
-
Rainfall in the Amazon is influenced by atmospheric circulation dynamics on multiple spatiotemporal scales. Anthropogenic influences such as deforestation, land-use changes, and global climate change are also critical factors in determining rainfall in South America. Modeling studies have projected a drier climate with the ongoing deforestation in the Amazon, but observational evaluation of the variability of rainfall and deforestation patterns has been limited. This study analyzes spatiotemporal trends in rainfall between 1981 and 2020 and relationships with deforestation age in the Brazilian Legal Amazon (BLA). An improved rainfall dataset is derived by calibrating the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data with observations from a rain gauge network in the BLA. Trend analysis is employed to identify significant changes in precipitation over the BLA. Satellite-based land cover data Mapbiomas and ET datasets are used to evaluate similar trends. While large spatial variability is observed, the results show coherent relationships between negative dry-season rainfall trends and old-age deforested areas. Deforestation aged up to a decade enhanced rainfall and older deforested regions have reduced rainfall during the dry season. These results suggest substantial changes in the hydroclimate of the BLA and increased vulnerability to future land cover change.more » « less
-
Abstract Water is redistributed from evaporation sources to precipitation sinks through atmospheric moisture transport. In the Brazilian Amazon, the spatial and temporal variability of dry season moisture sources for key agricultural regions has not been investigated. This study investigates moisture sources for dry season rainfall in the state of Rondônia in Brazil, especially during drought years. Using a precipitationshed framework, we quantified the variability of moisture contributions to rainfall in the state of Rondônia (Brazilian Amazon) and the influence of synoptic circulation patterns. Ocean evaporation accounts for 58% of mean dry season precipitation while continental recycling contributed 42%. During drought years, although forests maintain or increase evapotranspiration, the moisture contribution of both ocean and forests to dry season rainfall decreases due to the synoptic circulation changes, reducing the moisture transport into Rondônia.more » « less
-
Abstract Tropical rainforests provide essential ecosystem services to agricultural areas, including moisture recycling. In the Amazon basin, drought frequency has increased in the late 20th and early 21st centuries, but the role of forests, ocean, and nonforested areas in causing or mitigating drought has not been determined. Using a precipitationshed moisture tracking framework, we quantify the contribution sources of evaporation to rainfall in Rondônia in the Brazilian Amazon. Forests account for ∼48% of annual rainfall on average, and more than half of the forest source is from protected areas (PAs). During droughts in 2005 and 2010, moisture supply decreased from oceans and nonforested areas, while supply from forests was stable and compensated for the decrease. Remote sensing and land surface models corroborate the relative insensitivity of forest evapotranspiration to droughts. Forests mitigate drought in the agricultural study region, providing an important ecosystem service that could be disrupted with further deforestation.more » « less
An official website of the United States government
